Chapter 1

16

Super-Resolution Imaging of Mitotic Spindle Microtubules 2 Using STED Microscopy ³

Isabella Koprivec, Valentina Štimac, and Iva M. Tolić $\frac{4}{4}$

Abstract 5 and 3 a

Stimulated emission depletion (STED) microscopy is a powerful super-resolution imaging technique that 6 only recently entered the field of mitosis, where it proved to be invaluable for studying various microtubule 7 classes, kinetochore-microtubule attachments and chromosome segregation errors. Here, we describe 8 immunofluorescence combined with STED microscopy as a method for analyzing microtubules and 9 kinetochore-microtubule attachments in human mitotic spindles. We also describe live-cell STED micros- 10 copy as a method for single-plane short-term imaging of transient processes in crowded spindle areas. 11 Finally, we outline image analysis approaches for the quantitative assessment of microtubule bundles within 12 the spindle. 13

Key words STED microscopy, Cell division, Mitosis, Mitotic spindle, Microtubules, Kinetochores, 14 Chromosomes, Nucleation, Attachments, Segregation errors 15

1 Introduction 17

Stimulated emission depletion (STED) microscopy is a super-reso- ¹⁸ lution microscopy technique first introduced in 1994 [[1,](#page-15-0) [2](#page-15-1)]. STED ¹⁹ microscopy overcomes the diffraction limit of confocal microscopy ²⁰ by using a doughnut-shaped depletion laser to deplete the emitted ²¹ fluorescence at specific positions, thus limiting emission only to the ²² central "zero"-intensity laser spot [\[3](#page-15-2)]. Since STED can reach a ²³ resolution of up to 20 nm $[4]$ $[4]$, it has been widely used to image 24 structures and distribution of proteins within the cell. The power ²⁵ and versatility of STED microscopy are particularly evident in ²⁶ neuroscience, where visualization of cytoskeletal filaments and syn- ²⁷ aptic compartments has shed light on the architecture and motility ²⁸ of neurons, functions of synapses, dynamics of signal transmission, ²⁹ and neuron-glial interactions [[5](#page-15-4)]. Moreover, STED microscopy ³⁰

Authors Isabella Koprivec and Valentina Stimac have contributed equally to this chapter.

Tomomi Kiyomitsu (ed.), The Mitotic Spindle: Methods and Protocols, Methods in Molecular Biology, vol. 2872, [https://doi.org/10.1007/978-1-0716-4224-5_1](https://doi.org/10.1007/978-1-0716-4224-5_1#DOI),

[©] The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

proved invaluable for our understanding of complex organelles, as ³¹ it elucidated the nanoscale distribution of mitochondrial proteins ³² $[6, 7]$ $[6, 7]$ $[6, 7]$ $[6, 7]$ $[6, 7]$ and cristae dynamics in mitochondria $[8]$ $[8]$. In mitosis, various 33 super-resolution microscopy techniques have been used to resolve 34 the centrosome $[9]$ $[9]$ and the kinetochore $[10]$ structure. Yet the 35 visualization of fine or densely arranged microtubules within the ³⁶ spindle remained one of the biggest challenges. Luckily, the advent 37 of STED microscopy in mitosis over the past few years enabled us ³⁸ to understand the complex landscape of spindle microtubules, their ³⁹ mutual interactions and the various attachments they form with ⁴⁰ kinetochores on chromosomes. The technique has since been used 41 for studying mitosis in the malaria parasite (Plasmodium berghei), 42 Indian Muntjac fibroblasts and various human cell lines, and even ⁴³ made its way to the clinic as part of the safety evaluation for limbal 44 stem cells used in eye regeneration $[11-19]$ $[11-19]$ $[11-19]$ $[11-19]$ $[11-19]$. With its varied applica- 45 tions, STED has helped answer many of the long-standing ques- ⁴⁶ tions about the shapes of microtubule bundles within the ⁴⁷ metaphase spindle [[12\]](#page-15-0), midzone microtubules during anaphase ⁴⁸ [[13\]](#page-15-1), early spindle formation [[14\]](#page-15-12), spindle microtubule growth 49 [[15\]](#page-15-13), and previously indistinguishable microtubule classes and 50 chromosome segregation errors [[16\]](#page-15-14). 51

Here, we compare STED microscopy to existing approaches 52 (see Note 1) for studying spindle microtubules and discuss the 53 advantages and disadvantages of STED microscopy (see Note 2). ⁵⁴ We also provide detailed protocols for immunostaining and live-cell 55 STED super-resolution imaging of microtubules within human ⁵⁶ spindles, together with the accompanying image analysis ⁵⁷ approaches. 58

2 Materials 59 2.1 Cell Culture and Immunostaining 1. hTERT-RPE1 cells stably expressing either CENP-A-GPF or ⁶⁰ both CENP-A-GFP and Centrin1-GFP (see Note 3). 61 2. Cell culture medium: Dulbecco's Modified Eagle's Medium ⁶² with 1 g/L D-glucose, pyruvate and L-glutamine (DMEM), 63 supplemented with 10% (vol/vol) heat-inactivated Fetal ⁶⁴ Bovine Serum (FBS) and penicillin (100 IU/mL)/streptomy- ⁶⁵ $\sin(100 \text{ mg/mL})$ solution. 66 3. 35 mm uncoated glass coverslip dishes with 0.17 mm glass ⁶⁷ thickness (MatTek Corporation or Ibidi GmbH). ⁶⁸ 4. Cytoskeleton extraction buffer (CEB): 0.5% w/v Triton-X- ⁶⁹ 100, 0.1 M PIPES, 1 mM EDTA and 1 mM $MgCl₂$ in milli- 70 Q water. We use UltraPure 0.5 M EDTA (pH = 8.0 , 71) 15575020, Invitrogen). We recommend first preparing 5% ⁷² w/v Triton-X-100, 1 M PIPES solution (pH = 7.0), and 73 1 M $MgCl₂$ solutions and diluting them in milli-Q water. 74

Store CEB for a maximum of three weeks at room temperature ⁷⁵ to achieve the best results. Before use, aliquot CEB into smaller ⁷⁶ volumes and pre-warm the aliquot to $37 \degree C$ to prevent mitotic $77 \degree C$ spindle shrinkage at temperatures lower than $37 \degree C$ (see Notes 78 **4** and **5**). 79

- 5. Fixation solution: 3% paraformaldehyde and 0.1% glutaralde- ⁸⁰ hyde solution in PBS. Add 3 mL of 4% paraformaldehyde, 8 μL ⁸¹ of 50% glutaraldehyde, 0.4 mL 10× PBS and fill up with milli-Q ⁸² water until 4 mL. The fixation solution should be made fresh 83 each time and pre-warmed to 37 °C to prevent mitotic spindle 84 shrinkage at temperatures lower than $37 \degree$ C. 85
- 6. Reduction buffer: 0.1% w/v sodium borohydride solution. ⁸⁶ Dissolve 10 mg of sodium borohydride in 10 mL of $1 \times PBS$ 87 (hydrogen gas bubbles should appear upon dissolving). Make a ⁸⁸ fresh solution each time and handle sodium borohydride with ⁸⁹ care as it is reactive. 90
- 7. Quenching buffer: 100 mM glycine in 1× PBS. The solution ⁹¹ can be stored for several months at 4° C. 92
- 8. Blocking/permeabilization (B/P) buffer: 1% w/v NGS and ⁹³ 0.5 w/v Triton-X-100 in milli-Q water. The B/P buffer can ⁹⁴ be stored for several months at -20 °C. 95
- 9. Antibodies: Rat monoclonal tubulin (diluted 1:500, ⁹⁶ MA1-80017, Invitrogen), donkey anti-rat Alexa Fluor 568 or ⁹⁷ 594 (diluted 1:100, ab175475 and ab150156, Abcam); see ⁹⁸ Note 6 and Table [1](#page-2-0) for tips on how to choose the right 99 antibody. 100
- **2.2 STED Imaging** 1. STED microscope: our STED images are acquired on the 101 Expert Line easy3D STED microscope system (Abberior ¹⁰² Instruments), equipped with a pulsed STED laser at 775 nm ¹⁰³ $\left($ see Note 7). 104

Table 1 to the contract of the

Choosing the right secondary antibody.

3 Methods 119

3.1 Cell Culture and Immunostaining For immunostaining, we optimized the first steps and chemicals of 120 two previously published protocols for expansion microscopy ¹²¹ [[20,](#page-15-15) [21](#page-15-16)]. We used a fixation solution containing glutaraldehyde, 122 which was demonstrated to be the best option for visualizing 123 microtubules in the mitotic spindle [[20\]](#page-15-15). For experiments ¹²⁴ described in this article, we used hTERT-RPE1 cells stably expres- ¹²⁵ sing either CENP-A-GPF or both CENP-A-GFP and ¹²⁶

> 1. Plate the cells 1–2 days before the fixation and keep them at ¹²⁸ $37 \degree$ C and 5% CO₂. The optimal confluency of cells on the day 129 of fixation should be 80–90%, corresponding to the highest ¹³⁰ number of mitotic cells. We use 35 mm uncoated glass cover-
131 slip dishes with 0.17 mm glass thickness and seed the cells in 132 1 mL of the appropriate cell medium.

Centrin1-GFP. All protocols are optimized for these cell lines. 127

- 2. Remove the cell media from the dishes and add $500-1000 \mu L$ 134 of pre-warmed CEB for 15 s to permeabilize cells and remove ¹³⁵ the cytoplasmic components that would otherwise result in ¹³⁶ unspecific binding of antibodies. CEB must be removed after 137 15 s because further exposure will cause the mitotic cells to ¹³⁸ detach, as CEB largely disrupts the membrane (see Notes 5 139 and 6). 140
- 3. Immediately after removing CEB, add 1 mL of pre-warmed ¹⁴¹ fixation solution to the dish and incubate for 10 min at room ¹⁴² temperature. 143
- 4. Aspirate the fixation solution and add 1 mL of the reduction ¹⁴⁴ solution for 7 min at room temperature. Sodium borohydride 145 reduces the autofluorescence of glutaraldehyde from the fixa- ¹⁴⁶ tion solution. ¹⁴⁷
- 5. Aspirate the reduction solution and add 1 mL of the quenching ¹⁴⁸ solution for 10 min at room temperature. Glycine binds alde- ¹⁴⁹ hyde groups from the fixation solution and reduces the unspe- ¹⁵⁰ cific binding of antibodies. 151
- 6. Remove the quenching solution and incubate the cells with ¹⁵² 1 mL of B/P buffer for 2.5 h at 4 °C on the orbital shaker. This ¹⁵³ further permeabilizes the cells and prevents the unspecific ¹⁵⁴ binding of antibodies. 155
- 7. Incubate the sample with 300 μL of the primary antibody ¹⁵⁶ diluted in B/P buffer overnight at 4° C on the orbital shaker. 157 We achieved the best results using the rat monoclonal tubulin 158 at $1:500$ dilution.
- 8. The following day, wash the sample 3×, for 5 min each time, ¹⁶⁰ with 1 mL of $1 \times PBS$ at room temperature on the orbital 161 shaker. 162
- 9. Incubate the sample with 300 μL of the secondary antibody ¹⁶³ diluted in B/P buffer for 1 h at room temperature on the 164 orbital shaker. We use Alexa Fluor 568 or 594 antibodies at ¹⁶⁵ 1:1000 dilution (see **Note** 7). 166
- 10. Wash the sample $3\times$, for 5 min each time, with 1 mL of $1\times$ PBS 167 at room temperature on the orbital shaker.
- 11. Additionally, chromosomes can be stained using 1 mL of DAPI ¹⁶⁹ solution $(1 \mu g/mL)$ for 10 min at room temperature on the 170 orbital shaker. ¹⁷¹
- 12. Wash the DAPI solution $3\times$, for 5 min each time, with 1 mL of 172 1× PBS. Store the sample in 1 mL of 1× PBS at 4 $\rm{°C}$ for a 173 maximum of three weeks. The fluorescence signal is the best ¹⁷⁴ when imaging is performed immediately after 175 immunostaining. 176
- 1. Seed the cells 1–2 days before live-cell imaging on 35 mm ¹⁷⁷ uncoated glass coverslip dishes with 0.17 mm glass thickness ¹⁷⁸ in 1 mL of the appropriate medium and keep them at 37 °C and ¹⁷⁹ 5% $CO₂$. The optimal confluency of cells on the imaging day 180 should be 80–90%, corresponding to the highest number of ¹⁸¹ mitotic cells. ¹⁸²
- 2. Dissolve the contents of SiR-tubulin kit vials according to the ¹⁸³ manufacturer's instructions. Add 50 μL of fresh anhydrous ¹⁸⁴ DMSO to the SiR-tubulin vial to make a stock concentration ¹⁸⁵ of 1 mM. Dissolve verapamil in 100 μL of fresh anhydrous ¹⁸⁶ DMSO to make a stock concentration of $10 \text{ mM } (1000 \times)$. 187
- 3. Take 1 mL of cell medium from the dish with cells and add ¹⁸⁸ 0.1 μL of the SiR-tubulin dye to this 1 mL medium to make a ¹⁸⁹ final dye concentration of 100 nM. To avoid dye efflux, add ¹⁹⁰ 1 μL of the efflux pump inhibitor verapamil along with the dye ¹⁹¹

3.2 Staining Tubulin with a Live-Cell Dye

to 1 mL of cell medium. Resuspend the staining solution well ¹⁹² and add it to the cells (if there is any remaining medium on the ¹⁹³ cells, remove it before adding the staining solution). Utilizing ¹⁹⁴ the old cell medium is essential because the fresh one can stop ¹⁹⁵ the cells from dividing. 196

4. Incubate for 1 h at 37° C and 5% CO₂ before imaging. 197

3.3 STED Imaging of Fixed Samples 1. Before imaging, turn on the microscope system (use manufac- ¹⁹⁸ turer's recommendations depending on the system) and put ¹⁹⁹ the dishes with fixed samples at room temperature for at least ²⁰⁰ 30 min before the session. This ensures that the temperature of ²⁰¹ the sample is equilibrated to room temperature, preventing the ²⁰² sample drift during imaging. 203

- 2. Ensure the system is properly aligned using the sample with ²⁰⁴ beads and follow the manufacturer's instructions for automatic ²⁰⁵ and manual alignment. 206
- 3. For fixed sample imaging, choose the 100× objective and put a ²⁰⁷ drop of immersion oil on the lenses. Put the dish with the ²⁰⁸ sample on the stage and find focus using the brightfield or ²⁰⁹ epifluorescence. Be aware that the epifluorescence can cause ²¹⁰ photobleaching before imaging, so use it only when necessary. ²¹¹
- 4. Find mitotic cells using eyepieces (for example, use the DAPI ²¹² signal to discern mitotic phases based on the appearance of ²¹³ DNA). ²¹⁴
- 5. Set up the protocol for STED imaging. Determine the size of ²¹⁵ the region of interest (ROI) to encompass the entire cell. Set ²¹⁶ the pixel size to 20 nm. The Expert Line easy3D STED micro- ²¹⁷ scope system can go down to 10 nm, but you should remember ²¹⁸ that lowering pixel size significantly increases the imaging time. ²¹⁹ Therefore, the pixel size should be adjusted to meet the ²²⁰ requirements regarding the final image resolution and imaging ²²¹ duration. 222
- 6. Select either 2D or 3D STED based on whether you need ²²³ better lateral (XY) or axial (Z) resolution, respectively. Since 224 we usually require the best possible resolution between micro- ²²⁵ tubules in the spindle midzone in the XY plane, we use 2D ²²⁶ STED (see Note 11).
- 7. Determine the laser powers for each wavelength and the ²²⁸ 775 nm STED line based on the photobleaching of your ²²⁹ sample. We use the 488 nm laser to excite CENP-A-GFP 230 (40% laser power) and the 561 nm laser to excite Alexa Fluor ²³¹ 594 (20% laser power). To achieve proper super-resolution of ²³² microtubules (see Subheading 3.6), the 775 nm STED laser for 233 depleting the red line was set to 45%. ²³⁴
- 8. Additionally, adjusting dwell time (for how long the laser is ²³⁵ applied to the sample) and line accumulation (the number of ²³⁶ scans) is critical to achieve the best resolution. Keep in mind ²³⁷ that increasing these two settings also increases the imaging ²³⁸ time and photobleaching of the sample. We got the best results ²³⁹ when we adjusted the dwell time to 10 μs and the line accumu- ²⁴⁰ lation to 1. The pinhole size determines the amount of out-of- ²⁴¹ focus light reaching the detector. A better resolution is ²⁴² achieved when the pinhole size is smaller. For our purposes, ²⁴³ we set the pinhole size to 1.0 AU. The described settings result ²⁴⁴ in an average of 100–200 photons collected at the avalanche ²⁴⁵ photodetector for each channel, corresponding to the opti- ²⁴⁶ mum signal collection and the best resolution. ²⁴⁷
- 9. Before imaging, adjust the Z-stack's first and last planes and the ²⁴⁸ distance between the planes. Alternatively, you can determine ²⁴⁹ the middle plane of your image and set the total distance you ²⁵⁰ want to acquire. See Table [1](#page-2-0) for more information on fluoro- 251 phore stability. 252
- 10. After the acquisition, shut down the system and clean the ²⁵³ objective lenses with Whatman lens cleaning tissue. ²⁵⁴

3.4 Live-Cell STED Imaging We imaged microtubules stained with 100 nM SiR-tubulin in an ²⁵⁵ RPE1 cell line that stably expresses CENP-A-GFP and Centrin1- ²⁵⁶ GFP and the following protocol was specifically adapted for this cell ²⁵⁷ line. Imaging with SiR-tubulin dye at this concentration can be ²⁵⁸ performed only for 45–60 min because the high concentration of ²⁵⁹ the dye results in microtubule stabilization and the accompanying ²⁶⁰ toxic effects after that point. ²⁶¹

- 1. Heat the incubator chamber to 37 °C for live-cell imaging and ²⁶² adjust $CO₂$ to 5% after turning on the system. The cells must be 263 kept in controlled conditions to ensure cell health. ²⁶⁴
- 2. Use either $100 \times$ oil objective or $60 \times$ water objective (see **Note** 265) 9 for tips on choosing the right objective). Use the appropriate ²⁶⁶ immersion for the objective (if you decide to use the oil objec- ²⁶⁷ tive, we recommend an oil that is stable at 37 °C to avoid the ²⁶⁸ drift of the sample). Focus the sample using the brightfield ²⁶⁹ optics and find mitotic cells based on the CENP-A signal. ²⁷⁰ Alternatively, SPY-DNA dyes at 20–40 nM concentration can ²⁷¹ be used for cell lines that do not express fluorescent proteins. ²⁷²
- 3. Follow steps 5–9 from the protocol for *STED imaging of fixed* 273 samples. ROI can include only a small part of the spindle (e.g., 274) astral region or midzone) to reduce the photobleaching and ²⁷⁵ expedite the imaging. We used the following laser powers for ²⁷⁶ our sample: 488 nm to 15%, 640 nm to 30%, and the 775 nm ²⁷⁷ STED laser to 10%. Pixel size was set to 25 nm, dwell time to ²⁷⁸ 7 μs, line accumulation to 5, pinhole size to 1.0 AU and STED ²⁷⁹ mode to 2D.
- 4. We used a single z-plane for the imaging of microtubules in the ²⁸¹ whole spindle because imaging is slow $(-45 \text{ s per plane})$. In 282 cases where you want to image a small ROI, the number of ²⁸³ z-planes can be increased based on the dynamics of the process ²⁸⁴ you want to image. If you wish to image cells during certain ²⁸⁵ time periods, adjust the total time of imaging and the time ²⁸⁶ interval between frames while also checking for signs of photo- ²⁸⁷ toxicity (e.g., spindle shrinkage). ²⁸⁸
- 5. After the acquisition, shut down the system and clean the ²⁸⁹ objective lenses with Whatman lens cleaning tissue. ²⁹⁰

3.5 Using STED Microscopy for the Detection of Individual Microtubules in **Environments** Compared to confocal microscopy, STED microscopy enables pre- ²⁹¹ cise visual detection of various microtubule bundles within the ²⁹² spindle. In addition to providing stunning images of mitotic spin- ²⁹³ dles, it also allows for visual detection and analysis of microtubules ²⁹⁴ in crowded areas, including the astral region and the spindle mid- ²⁹⁵ zone (Fig. $1a-d$ $1a-d$). Where confocal microscopy detects only a faint 296 signal indistinguishable from that of the background, STED ²⁹⁷ microscopy captures even the very thin structures (Fig. [1b, d\)](#page-8-0). 298 Additionally, where confocal microscopy shows a single microtu- ²⁹⁹ bule bundle, super-resolution can distinguish between two separate 300 entities within the bundle (Fig. [1b, d\)](#page-8-0). Thus, using STED micros- 301 copy to study microtubules within the mitotic spindle significantly ³⁰² increases the accuracy and precision of analysis. 303

3.6 Determining the Resolution To determine the resolution of our STED microscopy protocol ³⁰⁴ compared to confocal microscopy, we image the same spindle ³⁰⁵ using confocal and STED microscopy protocols on the same micro- ³⁰⁶ scope (Fig. $2a$). We use the Line tool within the Imspector software 307 or Fiji/ImageJ to draw a line perpendicular to an isolated astral ³⁰⁸ microtubule and create an intensity profile (Fig. $2a$). We then 309 estimate the resolution as the width of the tubulin intensity peak ³¹⁰ at its half-maximum value, measured from the background value ³¹¹ obtained using the 25×25 pixel Square Tool (Fig. [2b\)](#page-9-0). We con- 312 sider the protocol appropriate for imaging if the measured width is, 313 on average, less than 90–100 nm. In the example in Fig. [2](#page-9-0), the ³¹⁴ resolution of the STED image was estimated to be 66 nm, com- ³¹⁵ pared to 234 nm in the confocal image. This implies that STED ³¹⁶ imaging improved the spatial resolution by a factor of 3.5. 317

3.7 Using STED Microscopy to Study Microtubule Bundle Composition and Nucleation

Crowded

STED microscopy, combined with image analysis, can be a power- ³¹⁸ ful tool for quantitative analysis of microtubules within the spindle. ³¹⁹ Using a protocol we previously developed to measure the tubulin ³²⁰ intensity of a specific microtubule bundle $[12]$ $[12]$, we can determine 321 the number of microtubules within a particular bundle at any time 322 point and any position within the spindle. Provided that the micro- ³²³ tubule bundle is relatively isolated from its neighbors, we place a ³²⁴

Fig. 1 STED microscopy for discerning individual microtubules. (a) STED super-resolution image of microtubules immunostained for α-tubulin (gray) in RPE1 cells stably expressing CENP-A-GFP and Centrin1-GFP (rainbow, confocal). The image shows a maximum intensity projection of 8 central z-planes of the metaphase spindle. Kinetochores and centrosomes are color-coded for depth with the Spectrum LUT in ImageJ throughout the 8 z-planes, corresponding to 2 μ m. (b) Comparison of tubulin signal obtained using either confocal or STED microscopy to image the spindle from (a). Insets represent close-ups of the astral region and the spindle midzone. (c) STED super-resolution image of microtubules dyed with 100 nM SiR-tubulin (gray) in HAUS6-depleted RPE1 cells stably expressing CENP-A-GFP and Centrin1-GFP (purple, confocal). The image shows one central z-plane of the metaphase spindle. (d) Comparison of tubulin signal obtained using either confocal or STED microscopy to image the spindle from (c). Insets represent close-ups of the astral region and the spindle midzone. Arrowheads point to structures that could only be resolved using STED microscopy. The brightness and contrast were adjusted so that astral microtubules are similarly visible in all spindles in STED microscopy or that all captured microtubules are visible in insets. Scale bars, 2 μm

 25×25 pixel Square tool in Fiji/ImageJ in the middle of the 325 microtubule bundle of interest and then place another ³²⁶ 25×25 pixel square in the empty nearby area to measure the 327 background, on a single-plane image of the spindle (Fig. [3a\)](#page-10-0). The ³²⁸ microtubule bundle's intensity equals the bundle's measured inten- ³²⁹ sity (mean intensity within the square) minus that of the back- ³³⁰ ground. To obtain the number of microtubules within the bundle ³³¹ of interest, we compare it against astral microtubules, which consist ³³² of single microtubules. To measure the tubulin intensity of astral ³³³ microtubules, we again place one 25×25 pixel square on the astral 334 microtubule and another in the empty nearby area to measure the ³³⁵ background (Fig. [3a\)](#page-10-0). Subsequently, we subtract the two values to ³³⁶ obtain the final intensity of the astral microtubule. This can be ³³⁷

Fig. 2 Determining the spatial resolution. (a) STED super-resolution image of microtubules immunostained for α-tubulin (rainbow) in RPE1 cells stably expressing CENP-A-GFP (not shown). The image shows a maximum intensity projection of 6 central z-planes of the metaphase spindle. Microtubules are color-coded for depth with the Spectrum LUT in ImageJ throughout the 6 z-planes, corresponding to 1.8 μ m. Insets represent sum intensity projections of the astral region obtained using either confocal or STED microscopy to image the spindle from (a). Line Tool (length $= 1 \mu m$, thickness $= 1$) and Square Tool (25 \times 25 pixel, corresponding to 0.5×0.5 μ m) from ImageJ are drawn on the insets and represent tools to measure the intensity profile of the astral microtubule and the mean intensity of the nearby background, respectively. (b) Intensity profiles of the 1 μm line drawn perpendicularly to the astral microtubule in ImageJ for astral microtubules imaged using either confocal or STED microscopy. Resolution is defined as the width of the peak at its half-maximum, after subtracting the background, and is considered appropriate when this value amounts to <100 nm. The brightness and contrast were adjusted so that astral microtubules are similarly visible in all spindles in STED microscopy or that all captured microtubules are visible in insets. Scale bars, 2 μm

repeated many times, and the average can be used to make a ³³⁸ comparison. Finally, to calculate the number of microtubules, we ³³⁹ divide the intensity of the microtubule bundle of interest by the ³⁴⁰ intensity of the astral microtubule. ³⁴¹

STED microscopy can also be used to study specific nucleation 342 processes that can hardly be visible when using confocal micros- ³⁴³ copy, particularly kinetochore-mediated nucleation. When using ³⁴⁴ centrinone, an inhibitor of polo-like kinase 4 (PLK4) [\[22\]](#page-16-0), to 345 remove one centrosome, we were able to directly visualize sites ³⁴⁶ where microtubule nucleation at kinetochores took place - includ- 347 ing small microtubule stubs that arose from the kinetochores and ³⁴⁸ clusters that started forming from them to create the future pole of ³⁴⁹ the acentrosomal spindle side $(Fig. 3b)$ $(Fig. 3b)$ $(Fig. 3b)$. 350

3.8 Using STED Microscopy to Study Kinetochore-**Microtubule** Attachments and Chromosome **Segregation Errors**

In addition to studying microtubule nucleation, STED microscopy ³⁵¹ is a powerful method to study kinetochore-microtubule attach- ³⁵² ments and chromosome segregation errors. STED microscopy ³⁵³ allows direct visualization of any type of attachment, including ³⁵⁴ mature, early end-on and lateral attachments within the two ³⁵⁵ poles, but also more complex attachments that peripheral kineto- ³⁵⁶ chores form before they reach the area between the two spindle ³⁵⁷ poles (Fig. [4a\)](#page-11-0). This is particularly useful since direct visualization ³⁵⁸ of kinetochore-microtubule attachments can be combined with cell ³⁵⁹

Fig. 3 Measuring the number of microtubules within a bundle and visualizing microtubule nucleation at the kinetochore. (a) STED super-resolution image of microtubules immunostained for α -tubulin (gray) in RPE1 cells stably expressing CENP-A-GFP (rainbow, confocal). The image shows a maximum intensity projection of 6 central z-planes of the metaphase spindle. Kinetochores are color-coded for depth with the Spectrum LUT in ImageJ throughout the 6 z-planes, corresponding to 1.8 μ m. Insets show the astral region and the microtubules associated with one kinetochore pair from the spindle in (a). Square Tool (25 \times 25 pixel) from ImageJ is drawn on the insets and represents a tool to measure the intensity of the astral microtubule, microtubule bundle of interest and the associated backgrounds, respectively. A formula to calculate the number of microtubules within the bundle of interest is provided below. (b) STED super-resolution image of microtubules immunostained for α-tubulin (gray) in RPE1 cells stably expressing CENP-A-GFP and Centrin1-GFP (rainbow, confocal) and treated with 300 nM centrinone to remove one centrosome. The image shows a maximum intensity projection of the entire prometaphase spindle. Kinetochores and centrosomes are color-coded for depth with the Spectrum LUT in ImageJ throughout 6 z-planes, corresponding to 1.8 μ m. Insets show single z-planes of kinetochore-mediated microtubule nucleation sites, marked with yellow arrowheads. The brightness and contrast were adjusted so that astral microtubules are similarly visible in all spindles in STED microscopy or that all captured microtubules are visible in insets. Scale bars, $2 \mu m$

lines that enable simultaneous analysis of stably expressed proteins, ³⁶⁰ such as Mad2, a spindle assembly checkpoint protein that binds to ³⁶¹ kinetochores lacking mature end-on attachments $[23]$ $[23]$, or the 362 kinetochore protein Mis12 $[24]$. This combined approach can 363 provide extensive information about the nature of the visualized ³⁶⁴ attachments. 365

The ability of STED microscopy to precisely detect attach- ³⁶⁶ ments of kinetochores, even with single microtubules, is revolu- ³⁶⁷ tionary when it comes to studying chromosome segregation errors, ³⁶⁸ especially merotelic attachments in which an individual kinetochore ³⁶⁹ is bound to microtubules extending from the opposite poles ³⁷⁰

Fig. 4 Classifying kinetochore-microtubule attachments and identifying errors. (a) STED super-resolution image of microtubules immunostained for α -tubulin (gray) in RPE1 cells stably expressing CENP-A-GFP (rainbow, confocal). The image shows a maximum intensity projection of the entire prometaphase spindle. Kinetochores are color-coded for depth with the Spectrum LUT in ImageJ throughout 7 z-planes, corresponding to 2.1 μm. Insets show one z-plane or a maximum intensity projection of two z-planes with various types of attachments from the spindle in (a). (b) STED super-resolution image of microtubules immunostained for α-tubulin (gray) in RPE1 cells stably expressing CENP-A-GFP (purple, confocal) and treated with 200 μM CK-666 inhibitor of the Arp2/3 complex for 3 h. The image shows a single central z-plane. Insets represent close-ups of the merotelic attachment from the spindle in (b). Arrows point to the additional microtubule from the opposite side imaged using STED microscopy, which is undetectable when using confocal microscopy. The brightness and contrast were adjusted so that astral microtubules are similarly visible in all spindles in STED microscopy or that all captured microtubules are visible in insets. Scale bars, 2 μm

> [[25\]](#page-16-3). In addition to the previously used indicators of merotelic 371 attachments, including stretching of the kinetochore and its central ³⁷² location on the anaphase spindle, several microtubules that form ³⁷³ the erroneous attachment can now be directly visualized using ³⁷⁴ STED microscopy, whereas they are undistinguishable from the ³⁷⁵ background when using confocal microscopy (Fig. [4b](#page-11-0)). Not only ³⁷⁶ that but STED microscopy can also be used to detect merotelic ³⁷⁷ attachments even before they result in a lagging chromosome in ³⁷⁸ anaphase while they are still located within a crowded metaphase ³⁷⁹ plate $\lceil 12 \rceil$. 380

4 Notes 381

- 1. Existing approaches for studying spindle microtubules and ³⁸² their attachments to chromosomes: Before STED, primary ³⁸³ microscopy methods for detailed analysis of spindle microtu- ³⁸⁴ bules were electron microscopy (EM) [\[26](#page-16-4)–[30\]](#page-16-5) or expansion ³⁸⁵ microscopy (ExM) [\[20](#page-15-15)]. Even though EM is still a "gold ³⁸⁶ standard" for studying spindles at a single-microtubule resolu- ³⁸⁷ tion, it is costly, time-consuming and unsuitable for live-cell ³⁸⁸ imaging [\[31,](#page-16-6) [32](#page-16-7)]. Similarly, while much less expensive, ExM is ³⁸⁹ also time-consuming and unsuitable for live-cell imaging. ³⁹⁰ Thus, addressing numerous open scientific questions has relied ³⁹¹ on indirect approaches. For example, to study specific classes of ³⁹² microtubules within the spindle, several strategies have been ³⁹³ developed: cold treatment was used to remove ³⁹⁴ non-kinetochore microtubules and thus allowed the study of ³⁹⁵ isolated kinetochore microtubules within the spindle [[33\]](#page-16-8); a ³⁹⁶ combination of hNuf2 and HSET RNAi was used to remove ³⁹⁷ kinetochore microtubules and thus allowed the study of ³⁹⁸ isolated non-kinetochore microtubules [[34](#page-16-9)]; laser ablation ³⁹⁹ was used to detect the connection between kinetochore micro- ⁴⁰⁰ tubules and non-kinetochore microtubules that form a bridge ⁴⁰¹ between them, called bridging fibers [\[35\]](#page-16-10). Similarly, indirect ⁴⁰² approaches were employed to study kinetochore-microtubule ⁴⁰³ attachments in healthy and error-prone cells: cold treatment ⁴⁰⁴ was once again used to determine whether the kinetochore ⁴⁰⁵ attaches to kinetochore microtubules or non-kinetochore ⁴⁰⁶ ones [\[36,](#page-16-11) [37](#page-16-12)]; protein markers such as Mad1/2 or Bub1 ⁴⁰⁷ were used to assess the stability of attachments $[38, 39]$ $[38, 39]$ $[38, 39]$ $[38, 39]$; the 408 interkinetochore distance, location in the central part of the ⁴⁰⁹ spindle and stretching of the kinetochore were used as indica- ⁴¹⁰ tors of merotelic attachment $[40, 41]$ $[40, 41]$ $[40, 41]$ $[40, 41]$. Yet, the arrival of STED 411 microscopy to the cell division field allowed all of these phe- ⁴¹² nomena to be visualized and studied more directly. ⁴¹³
- 2. Advantages and disadvantages of STED microscopy: As with ⁴¹⁴ any method, there are several advantages and disadvantages to ⁴¹⁵ consider while determining whether STED microscopy is the ⁴¹⁶ right approach for a particular scientific question. Immunoflu- ⁴¹⁷ orescence combined with STED microscopy allows for a much ⁴¹⁸ shorter and simpler sample preparation protocol than electron ⁴¹⁹ microscopy and expansion microscopy—the entire sample ⁴²⁰ preparation and imaging can be performed within three work- ⁴²¹ ing days. Unlike the other two methods, STED also ensures ⁴²² that many cells are available for imaging in a dish or a slide, as ⁴²³ the sample is minimally processed and rarely contains artifacts. ⁴²⁴ In addition, STED can allow for user-friendly super-resolution ⁴²⁵

live-cell imaging with the SiR-tubulin dye [[42](#page-16-17)], and it works ⁴²⁶ well in combination with stably expressed proteins and tags ⁴²⁷ [\[15\]](#page-15-13). Yet, the method is not without its limitations. Besides 428 requiring a costly microscope system, it is important to care- ⁴²⁹ fully consider the choice of antibodies and dyes and to keep in 430 mind that imaging the entire spindle can take up to several ⁴³¹ hours, which may be an issue if microscope availability is lim- 432 ited or large sample size is required. When using live-cell STED 433 imaging, capturing the entire spindle is virtually impossible ⁴³⁴ with the currently available systems, and one can only image a 435 small region over a short period. With that in mind, STED 436 microscopy remains a unique and powerful approach for study- ⁴³⁷ ing spindle microtubules. ⁴³⁸

- 3. While we developed this protocol for RPE1 cells, it generally ⁴³⁹ works as a good starting point for other cell lines in 2D and 3D 440 cultures and for some organoids. However, further experimen- ⁴⁴¹ tal optimization would likely be needed to achieve the appro- ⁴⁴² priate resolution. 443
- 4. If the tubulin signal is weak or non-existent in the inner part of ⁴⁴⁴ the spindle compared to the outer parts, in most cases, it means 445 that the antibody did not penetrate the spindle. The problem ⁴⁴⁶ might be that CEB is too old or some components have gone 447 bad. We recommend preparing fresh ingredients and making ⁴⁴⁸ an entirely new CEB. \sim
- 5. If the spindles look shrunken or miss astral microtubules, the ⁴⁵⁰ CEB and fixative were not properly pre-warmed. These two ⁴⁵¹ chemicals must be pre-warmed exactly to 37 °C. ⁴⁵²
- 6. To ensure you choose the appropriate secondary antibody, ⁴⁵³ consult Table [1.](#page-2-0) ⁴⁵⁴
- 7. Be aware that the position of the system in the microscopy ⁴⁵⁵ room is critical for obtaining the best super-resolution images. ⁴⁵⁶ Avoid positioning the system close to the direct airflow from air 457 conditioning or near any vibration. This will result in the drift 458 of the sample or noise during imaging, respectively. (Note that ⁴⁵⁹ vibrations can arise due to the music or mobile phone usage ⁴⁶⁰ next to the system). 461
- 8. We recommend performing the system alignment before each ⁴⁶² session. Align all lasers in 2D and 3D and remember that the ⁴⁶³ pinhole must be appropriately positioned to ensure the best ⁴⁶⁴ results. Always check the beads after the automatic alignment ⁴⁶⁵ procedure and do not simply rely on the precision of the ⁴⁶⁶ automated protocol. 467
- 9. For the best possible super-resolution results, immersion and ⁴⁶⁸ mounting media with the same refractive indexes should be ⁴⁶⁹ used. While we found that the effect of this pairing is negligible 470

Advantages	Disadvantages	t.2
Allow for live-cell imaging	Need to be used in high concentrations (100-200 nM)	t.3
Strong signal	Short imaging window $(1 h)$	t.4
Fast penetration into cells	Unwanted effects on microtubule stabilization	t.5
Easy to use	Affinity for stable microtubules	t.6

 $\bf Table~2$ Things to consider when using Taxol-based dyes for live-cell imaging

when imaging spindles using the 2D STED mode, where PBS ⁴⁷¹ can be paired with an oil objective without a significant impact ⁴⁷² on the accuracy of the collected data, the effect can be much ⁴⁷³ more significant when using 3D STED mode for imaging of ⁴⁷⁴ very fine structures. As a general rule, we recommend using the ⁴⁷⁵ 100×/1.4NA UPLSAPO100x oil objective for imaging ⁴⁷⁶ mounted samples and the $60\times/1.2$ NA UPLSAPO60x water 477 objective for live-cell imaging. ⁴⁷⁸

- 10. For things to consider when using Taxol-based dyes for live- ⁴⁷⁹ cell imaging, consult Table [2](#page-14-0). 480
- 11. Choose 2D STED for primarily lateral (XY) super-resolution ⁴⁸¹ and 3D STED for axial (Z) super-resolution. Remember that ⁴⁸² switching from 2D to 3D STED increases the axial resolution ⁴⁸³ but decreases lateral resolution and vice versa. ⁴⁸⁴

Acknowledgments 485

The authors thank Alexey Khodjakov for the RPE1 cell lines; ⁴⁸⁶ Marko Sprem and the Abberior team for help with the Expert 487 Line easy3D STED microscope system setup and developing ⁴⁸⁸ microscopy protocols; all members of the Tolić group for helpful 489 discussions and advice. The authors acknowledge funding by the ⁴⁹⁰ European Research Council (ERC Synergy Grant, GA Number ⁴⁹¹ 855158), the Croatian Science Foundation (HRZZ) through ⁴⁹² Swiss-Croatian Bilateral Projects (project IPCH-2022-10-9344) ⁴⁹³ and Cooperation Programme with Croatian Scientists in the Dias- ⁴⁹⁴ pora "Research Cooperability" (project PZS-2019-02-7653), and ⁴⁹⁵ projects co-financed by the Croatian Government and the ⁴⁹⁶ European Union through the European Regional Development ⁴⁹⁷ Fund—the Competitiveness and Cohesion Operational ⁴⁹⁸ Programme: IPSted (Grant KK.01.1.1.04.0057) and QuantiXLie ⁴⁹⁹ Center of Excellence (Grant KK.01.1.1.01.0004). ⁵⁰⁰

502 References

- 504 1. Hell SW, Wichmann J (1994) Breaking the 505 diffraction resolution limit by stimulated emis-506 sion: stimulated emission-depletion fluores-507 cence microscopy. Opt Lett 19:780–782. 508 <https://doi.org/10.1364/OL.19.000780>
- 509 2. Klar TA, Hell SW (1999) Subdiffraction reso-510 lution in far-field fluorescence microscopy. Opt 511 Lett 24:954–956. [https://doi.org/10.1364/](https://doi.org/10.1364/OL.24.000954) 512 [OL.24.000954](https://doi.org/10.1364/OL.24.000954)
- 513 3. Vicidomini G, Bianchini P, Diaspro A (2018) 514 STED super-resolved microscopy. Nat Meth-515 ods 15:173–182. [https://doi.org/10.1038/](https://doi.org/10.1038/nmeth.4593) 516 [nmeth.4593](https://doi.org/10.1038/nmeth.4593)
- 517 4. Göttfert F, Wurm CA, Mueller V et al (2013) 518 Coaligned dual-channel STED nanoscopy and 519 molecular diffusion analysis at 20 nm resolu-520 tion. Biophys J 105:L01–L03. [https://doi.](https://doi.org/10.1016/j.bpj.2013.05.029) 521 [org/10.1016/j.bpj.2013.05.029](https://doi.org/10.1016/j.bpj.2013.05.029)
- 522 5. Werner C, Sauer M, Geis C (2021) Super-523 resolving microscopy in neuroscience. Chem 524 Rev 121(19):11971–12015. [https://doi.org/](https://doi.org/10.1021/acs.chemrev.0c01174) 525 [10.1021/acs.chemrev.0c01174](https://doi.org/10.1021/acs.chemrev.0c01174)
- 526 6. Wurm CA, Neumann D, Lauterbach MA et al 527 (2011) Nanoscale distribution of mitochon-528 drial import receptor Tom20 is adjusted to 529 cellular conditions and exhibits an inner-530 cellular gradient. PNAS 108(33): 531 13546–13551. [https://doi.org/10.1073/](https://doi.org/10.1073/pnas.1107553108) 532 [pnas.1107553108](https://doi.org/10.1073/pnas.1107553108)
- 533 7. Singh H, Lu R, Rodríguez PFG et al (2012) 534 Visualization and quantification of cardiac 535 mitochondrial protein clusters with STED 536 microscopy. Mitochondrion 12(2):230–236. 537 [https://doi.org/10.1016/j.mito.2011.](https://doi.org/10.1016/j.mito.2011.09.004) 538 [09.004](https://doi.org/10.1016/j.mito.2011.09.004)
- 539 8. Stephan T, Roesch A, Riedel D et al (2019) 540 Live-cell STED nanoscopy of mitochondrial 541 cristae. Sci Rep 9:12419. [https://doi.org/10.](https://doi.org/10.1038/s41598-019-48838-2) 542 [1038/s41598-019-48838-2](https://doi.org/10.1038/s41598-019-48838-2)
- 543 9. Mennella V, Keszthelyi B, McDonald KL et al 544 (2012) Subdiffraction-resolution fluorescence 545 microscopy reveals a domain of the centrosome 546 critical for the pericentriolar material organiza-547 tion. Nat Cell Biol 14(11):1159–1168. 548 <https://doi.org/10.1038/ncb2597>
- 549 10. Ribeiro SA, Vagnarelli P, Dong Y et al (2010) A 550 super-resolution map of the vertebrate kineto-551 chore. PNAS 107(23):10484–10489. [https://](https://doi.org/10.1073/pnas.1002325107) 552 doi.org/10.1073/pnas.1002325107
- 553 11. Pereira A, Sousa M, Almeida AC et al (2019) 554 Coherent-hybrid STED: high contrast 555 sub-diffraction imaging using a bi-vortex 556 depletion beam. Opt Express 27(6): 557 8092–8111. [https://doi.org/10.1364/OE.](https://doi.org/10.1364/OE.27.008092) 558 [27.008092](https://doi.org/10.1364/OE.27.008092)
- 12. Novak M, Polak B, Simunić J et al (2018) The 559 mitotic spindle is chiral due to torques within 560 microtubule bundles. Nat Commun 9:3571. 561 [https://doi.org/10.1038/s41467-018-](https://doi.org/10.1038/s41467-018-06005-7) 562 [06005-7](https://doi.org/10.1038/s41467-018-06005-7) 563
- 13. Vukušić K, Ponjavić I, Buđa R et al (2021) 564 Microtubule-sliding modules based on kinesins 565 EG5 and PRC1-dependent KIF4A drive 566 human spindle elongation. Dev Cell 56(9): 567 1253–1267.e10. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.devcel.2021.04.005) 568 [devcel.2021.04.005](https://doi.org/10.1016/j.devcel.2021.04.005) 569
- 14. Matković J, Ghosh S, Ćosić M et al (2022) 570 Kinetochore- and chromosome-driven transi- 571 tion of microtubules into bundles promotes 572 spindle assembly. Nat Commun 13(1):7307. 573 [https://doi.org/10.1038/s41467-022-](https://doi.org/10.1038/s41467-022-34957-4) 574 [34957-4](https://doi.org/10.1038/s41467-022-34957-4) 575
- 15. Almeida AC, Soares-de-Oliveira J, Drpic D 576 et al (2022) Augmin-dependent microtubule 577 self-organization drives kinetochore fiber mat- 578 uration in mammals. Cell Rep 39(1):110610. 579 [https://doi.org/10.1016/j.celrep.2022.](https://doi.org/10.1016/j.celrep.2022.110610) 580 [110610](https://doi.org/10.1016/j.celrep.2022.110610) 581
- 16. Stimac V, Koprivec I, Manenica M et al (2022) 582 Augmin prevents merotelic attachments by 583 promoting proper arrangement of bridging 584 and kinetochore fibers. eLife 11:e83287. 585 <https://doi.org/10.7554/eLife.83287> 586
- 17. Almeida AC, Soares-de-Oliveira J, Maiato H 587 (2023) Optimized protocol for live-cell analy- 588 sis of kinetochore fiber maturation in Indian 589 muntjac cells. STAR Protoc 4(1):102011. 590 https://doi.org/10.1016/j.xpro.2022. 591 [102011](https://doi.org/10.1016/j.xpro.2022.102011) 592
- 18. Zekušić M, Bujić Mihica M, Skoko M et al 593 (2023) New characterization and safety evalua- 594 tion of human limbal stem cells used in clinical 595 application: fidelity of mitotic process and 596 mitotic spindle morphologies. Stem Cell Res 597 Ther 14(1):368. [https://doi.org/10.1186/](https://doi.org/10.1186/s13287-023-03586-z) 598 $s13287 - 023 - 03586 - z$ 599
- 19. Zeeshan M, Rea E, Abel S et al (2023) Plasmo- 600 dium ARK2 and EB1 drive unconventional 601 spindle dynamics, during chromosome segre- 602 gation in sexual transmission stages. Nat Com- 603 mun 14(1):5652. [https://doi.org/10.1038/](https://doi.org/10.1038/s41467-023-41395-3) 604 [s41467-023-41395-3](https://doi.org/10.1038/s41467-023-41395-3) 605
- 20. Ponjavić I, Vukušić K, Tolić IM (2021) Expan- 606 sion microscopy of the mitotic spindle. Meth- 607 ods Cell Biol 161:247–274. [https://doi.org/](https://doi.org/10.1016/bs.mcb.2020.04.014) 608 [10.1016/bs.mcb.2020.04.014](https://doi.org/10.1016/bs.mcb.2020.04.014) 609
- 21. Zhang C, Kang JS, Asano SM et al (2020) 610 Expansion microscopy for beginners: visualiz- 611 ing microtubules in expanded cultured HeLa 612
- 613 cells. Curr Protoc Neurosci 92:e96. [https://](https://doi.org/10.1002/cpns.96) 614 doi.org/10.1002/cpns.96
- 615 22. Wong YL, Anzola JV, Davis RL et al (2015) 616 Reversible centriole depletion with an inhibitor
- 617 of Polo-like kinase 4. Science 348(6239): 618 1155–1160. [https://doi.org/10.1126/sci](https://doi.org/10.1126/science.aaa5111)
- 619 [ence.aaa5111](https://doi.org/10.1126/science.aaa5111)
- 620 23. Chen RH, Shevchenko A, Mann M et al (1998) 621 Spindle checkpoint protein Xmad1 recruits 622 Xmad2 to unattached kinetochores. J Cell 623 Biol 143(2):283–295. [https://doi.org/10.](https://doi.org/10.1083/jcb.143.2.283) 624 [1083/jcb.143.2.283](https://doi.org/10.1083/jcb.143.2.283)
- 625 24. Magidson V, Paul R, Yang N et al (2015) 626 Adaptive changes in the kinetochore architec-627 ture facilitate proper spindle assembly. Nat Cell 628 Biol 17(9):1134–1144. [https://doi.org/10.](https://doi.org/10.1038/ncb3223) 629 [1038/ncb3223](https://doi.org/10.1038/ncb3223)
- 630 25. Gregan J, Polakova S, Zhang L et al (2011) 631 Merotelic kinetochore attachment: causes and 632 effects. Trends Cell Biol 21(6):374–381. 633 <https://doi.org/10.1016/j.tcb.2011.01.003>
- 634 26. McDonald KL, O'Toole ET, Mastronarde DN 635 et al (1992) Kinetochore microtubules in PTK 636 cells. J Cell Biol 118:369–383. [https://doi.](https://doi.org/10.1083/jcb.118.2.369) 637 [org/10.1083/jcb.118.2.369](https://doi.org/10.1083/jcb.118.2.369)
- 638 27. Mastronarde DN, McDonald KL, Ding R et al 639 (1993) Interpolar spindle microtubules in PTK 640 cells. J Cell Biol 123(6):1475–1489. [https://](https://doi.org/10.1083/jcb.123.6.1475) 641 doi.org/10.1083/jcb.123.6.1475
- 642 28. Sikirzhytski V, Renda F, Tikhonenko I et al 643 (2018) Microtubules assemble near most kine-644 tochores during early prometaphase in human 645 cells. J Cell Biol 217(8):2647–2659. [https://](https://doi.org/10.1083/jcb.201710094) 646 doi.org/10.1083/jcb.201710094
- 647 29. O'Toole E, Morphew M, McIntosh JR (2020) 648 Electron tomography reveals aspects of spindle 649 structure important for mechanical stability at 650 metaphase. Mol Biol Cell 31(3):184–195. 651 <https://doi.org/10.1091/mbc.E19-07-0405>
- 652 30. Kiewisz R, Fabig G, Conway W et al (2022) 653 Three-dimensional structure of kinetochore-654 fibers in human mitotic spindles. elife 11: 655 e75459. [https://doi.org/10.7554/eLife.](https://doi.org/10.7554/eLife.75459) 656 [75459](https://doi.org/10.7554/eLife.75459)
- 657 31. Merdes A, Stelzer EHK, De Mey J (1991) The 658 three-dimensional architecture of the mitotic 659 spindle, analyzed by confocal fluorescence and 660 electron microscopy. J Electron Microsc Tech 661 18:61–73. [https://doi.org/10.1002/jemt.](https://doi.org/10.1002/jemt.1060180110) 662 [1060180110](https://doi.org/10.1002/jemt.1060180110)
- 663 32. McIntosh JR (2001) Electron microscopy of 664 cells: a new beginning for a new century. J 665 Cell Biol 153(6):F25–F32. [https://doi.org/](https://doi.org/10.1083/jcb.153.6.f25) 666 [10.1083/jcb.153.6.f25](https://doi.org/10.1083/jcb.153.6.f25)
- 33. Brinkley BR, Cartwright J (1975) Cold labile 667 and cold stable microtubules in the mitotic 668 spindle of mammalian cells. Ann N Y Acad Sci 669 253:428–439. [https://doi.org/10.1111/j.](https://doi.org/10.1111/j.1749-6632.1975.tb19218.x) 670 [1749-6632.1975.tb19218.x](https://doi.org/10.1111/j.1749-6632.1975.tb19218.x) 671
- 34. Cai S, O'Connell CB, Khodjakov A et al 672 (2009) Chromosome congression in the 673 absence of kinetochore fibres. Nat Cell Biol 674 11(7):832–838. [https://doi.org/10.1038/](https://doi.org/10.1038/ncb1890) 675 [ncb1890](https://doi.org/10.1038/ncb1890) 676
- 35. Kajtez J, Solomatina A, Novak M et al (2016) 677 Overlap microtubules link sister k-fibres and 678 balance the forces on bi-oriented kinetochores. 679 Nat Commun 7:10298. [https://doi.org/10.](https://doi.org/10.1038/ncomms10298) 680 [1038/ncomms10298](https://doi.org/10.1038/ncomms10298) 681
- 36. Salmon ED, Cimini D, Cameron LA et al 682 (2005) Merotelic kinetochores in mammalian 683 tissue cells. Philos Trans R Soc Lond Ser B Biol 684 Sci 360(1455):553-568. [https://doi.org/10.](https://doi.org/10.1098/rstb.2004.1610) 685 [1098/rstb.2004.1610](https://doi.org/10.1098/rstb.2004.1610) 686
- 37. Etemad B, Kuijt T, Kops G (2015) 687 Kinetochore–microtubule attachment is suffi- 688 cient to satisfy the human spindle assembly 689 checkpoint. Nat Commun 6:8987. [https://](https://doi.org/10.1038/ncomms9987) 690 doi.org/10.1038/ncomms9987 691
- 38. Kuhn J, Dumont S (2017) Spindle assembly 692 checkpoint satisfaction occurs via end-on but 693 not lateral attachments under tension. J Cell 694 Biol 216(6):1533–1542. [https://doi.org/10.](https://doi.org/10.1083/jcb.201611104) 695 [1083/jcb.201611104](https://doi.org/10.1083/jcb.201611104) 696
- 39. Etemad B, Vertesy A, Kuijt TEF et al (2019) 697 Spindle checkpoint silencing at kinetochores 698 with submaximal microtubule occupancy. J 699 Cell Sci 132(12):jcs231589. [https://doi.org/](https://doi.org/10.1242/jcs.231589) 700 [10.1242/jcs.231589](https://doi.org/10.1242/jcs.231589) 701
- 40. Cimini D, Moree B, Canman JC et al (2003) 702 Merotelic kinetochore orientation occurs fre- 703 quently during early mitosis in mammalian tis- 704 sue cells and error correction is achieved by two 705 different mechanisms. J Cell Sci 116:4213– 706 4225. <https://doi.org/10.1242/jcs.00716> 707
- 41. Sen O, Harrison JU, Burroughs NJ et al 708 (2021) Kinetochore life histories reveal an 709 Aurora-B-dependent error correction mecha- 710 nism in anaphase. Dev Cell 56(22): 711 3082–3099.e5. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.devcel.2021.10.007) 712 [devcel.2021.10.007](https://doi.org/10.1016/j.devcel.2021.10.007) 713
- 42. Lukinavičius G, Reymond L, D'Este E et al 714 (2014) Fluorogenic probes for live-cell imag- 715 ing of the cytoskeleton. Nat Methods 11(7): 716 731–733. [https://doi.org/10.1038/nmeth.](https://doi.org/10.1038/nmeth.2972) 717 2972 718